当前位置:工作总结 > 2023年度高中数学教案简案

2023年度高中数学教案简案

时间:2023-03-30 08:35:04 浏览次数:

下面是小编为大家整理的2023年度高中数学教案简案,供大家参考。

2023年度高中数学教案简案

作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么我们该如何写一篇较为完美的教案呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

高中数学教案简案篇一

1、理解并掌握曲线在某一点处的切线的概念;

2、理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法;

3、理解切线概念实际背景,培养学生解决实际问题的能力和培养学生转化

问题的能力及数形结合思想。

理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

教学难点:

用“无限逼近”、“局部以直代曲”的思想理解某一点处切线的斜率。

1、问题情境。

如何精确地刻画曲线上某一点处的变化趋势呢?

如果将点p附近的曲线放大,那么就会发现,曲线在点p附近看上去有点像是直线。

如果将点p附近的曲线再放大,那么就会发现,曲线在点p附近看上去几乎成了直线。事实上,如果继续放大,那么曲线在点p附近将逼近一条确定的直线,该直线是经过点p的所有直线中最逼近曲线的一条直线。

因此,在点p附近我们可以用这条直线来代替曲线,也就是说,点p附近,曲线可以看出直线(即在很小的范围内以直代曲)。

2、探究活动。

如图所示,直线l1,l2为经过曲线上一点p的两条直线,

(1)试判断哪一条直线在点p附近更加逼近曲线;

(2)在点p附近能作出一条比l1,l2更加逼近曲线的直线l3吗?

(3)在点p附近能作出一条比l1,l2,l3更加逼近曲线的直线吗?

切线定义:
如图,设q为曲线c上不同于p的一点,直线pq称为曲线的割线。

随着点q沿曲线c向点p运动,割线pq在点p附近逼近曲线c,当点q无限逼近点p时,直线pq最终就成为经过点p处最逼近曲线的直线l,这条直线l也称为曲线在点p处的切线。这种方法叫割线逼近切线。

思考:如上图,p为已知曲线c上的一点,如何求出点p处的切线方程?

例1 试求在点(2,4)处的切线斜率。

解法一 分析:设p(2,4),q(xq,f(xq)),

则割线pq的斜率为:

当q沿曲线逼近点p时,割线pq逼近点p处的切线,从而割线斜率逼近切线斜率;

当q点横坐标无限趋近于p点横坐标时,即xq无限趋近于2时,kpq无限趋近于常数4。

从而曲线f(x)=x2在点(2,4)处的切线斜率为4。

解法二 设p(2,4),q(xq,xq2),则割线pq的斜率为:

当?x无限趋近于0时,kpq无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为4。

练习 试求在x=1处的切线斜率。

解:设p(1,2),q(1+δx,(1+δx)2+1),则割线pq的斜率为:

当?x无限趋近于0时,kpq无限趋近于常数2,从而曲线f(x)=x2+1在x=1处的切线斜率为2。

小结 求曲线上一点处的切线斜率的一般步骤:

(1)找到定点p的坐标,设出动点q的坐标;

(2)求出割线pq的斜率;

(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

思考 如上图,p为已知曲线c上的一点,如何求出点p处的切线方程?

解 设

所以,当无限趋近于0时,无限趋近于点处的切线的斜率。

变式训练

1。已知,求曲线在处的切线斜率和切线方程;

2。已知,求曲线在处的切线斜率和切线方程;

3。已知,求曲线在处的切线斜率和切线方程。

课堂练习

已知,求曲线在处的切线斜率和切线方程。

1、曲线上一点p处的切线是过点p的所有直线中最接近p点附近曲线的直线,则p点处的变化趋势可以由该点处的切线反映(局部以直代曲)。

2、根据定义,利用割线逼近切线的方法, 可以求出曲线在一点处的切线斜率和方程。

高中数学教案简案篇二

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

(2)进一步理解曲线的方程和方程的曲线。

(3)初步掌握求曲线方程的方法。

(4)通过本节内容的教学,培养学生分析问题和转化的能力。

教学重点、难点:求曲线的方程。

教学用具:计算机。

教学方法:启发引导法,讨论法。

教学过程:

【引入】

1、提问:什么是曲线的方程和方程的曲线。

学生思考并回答。教师强调。

2、坐标法和解析几何的意义、基本问题。

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;
用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

【问题】

如何根据已知条件,求出曲线的方程。

【实例分析】

例1:设 、 两点的坐标是 、(3,7),求线段 的垂直平分线 的方程。

首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

解法一:易求线段 的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

证明:(1)曲线上的点的坐标都是这个方程的解。

设 是线段 的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点 的坐标 是方程 的解。

(2)以这个方程的解为坐标的点都是曲线上的点。

设点 的坐标 是方程①的任意一解,则

到 、 的距离分别为

所以 ,即点 在直线 上。

综合(1)、(2),①是所求直线的方程。

至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);
至于第二条上边已证。

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

让我们用这个方法试解如下问题:

例2:点 与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程。

分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

求解过程略。

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;
其次设曲线上任意一点;
然后写出表示曲线的点集;
再代入坐标;
最后整理出方程,并证明或修正。说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;

(2)写出适合条件 的点 的集合


(3)用坐标表示条件 ,列出方程 ;

(4)化方程 为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点。

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;
如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

上述五个步骤可简记为:建系设点;
写出集合;
列方程;
化简;
修正。

下面再看一个问题:

例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程。

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合

由距离公式,点 适合的条件可表示为

将①式 移项后再两边平方,得

化简得

由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

【练习巩固】

题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程。

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 。

根据条件 ,代入坐标可得

化简得

由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

推荐访问:教案 高中数学 高中数学教案简案 2022年高中数学教案简案精选 2022年高中数学教案简案精选图片